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Subgraph counts

• Let G(n, p) be the Erdős–Rényi graph with n vertices and connection probability

p, and let G ∼ G(n, p) be a sample from this distribution.

• H is a fixed small connected graph with q vertices, and let QH(G ) be the number

of copies of H in G (up to isomorphism).

Question

How does QH(G ) behave under various regimes of p = pn?

For example, if H is just an edge, it is clear that this is asymptotically normal (when pn

is large enough) since it is just a sum of i.i.d. random variables. But things are

nontrivial when H is a general subgraph.
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Subgraph counts

We know the asymptotic distributions of QH(G ) in many cases:
• [Ruc88] shows that under certain conditions, QH(G ) is asymptotically normal.

• However, this regime must necessarily exclude the case when EQH(G ) = Θ(1),

where a natural guess for the asymptotic distribution is Poisson. Although this is

not true in general, [Bol81] established this for the large class of strictly balanced

graphs.

Definition (density, strictly balanced graphs)

Define the density of a graph H to be d(H) = e(H)/v(H). A graph H is strictly
balanced if every proper subgraph H ′ ⊊ H satisfies d(H ′) < d(H). Note that every

connected regular graph is strictly balanced.

In fact, the criterion in [Ruc88] also depends on the related quantity

maxH′⊆H e(H ′)/v(H ′).
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Subgraph counts: tail behavior

Since asymptotic distributions tell us little about the finite sample behavior, let us now

ask the following:

Question

For a sequence kn → ∞, how does P(QH(G ) ≥ kn) behave?

The regime which has received maximum attention is when kn = C · E [QH(G )] for

C > 1.

This problem turned out to be significantly harder than its predecessors.
• The seminal work of Chatterjee and Varadhan [CV11] achieved asymptotically

sharp rates on this problem when p is a constant, using the theory of graphons

(graph limits) and the Szemerédi regularity lemma, by reducing the problem to a

natural “mean-field” variational problem.
• In fact, they established a large deviation principle for Erdős–Rényi graphs in the

cut-topology, with respect to which QH(G ) is continuous.
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Subgraph counts: tail behavior

• Due to poor quantitative estimates in the Szemerédi regularity lemma, [CV11]

could only be extended to pn ≳ (log n)−ε for some small ε.

• The arguments of Chatterjee and Dembo [CD16] developed new technology to

deal with sparser cases, which for the case of the triangle extended previously

known results down to pn ≥ n−1/42 log n.

• This was however not satisfactory because one expects the mean-field variational

problem to hold as long as pn ≫ log n
n . After a sequence of follow-up works, finally

in 2019, a breakthrough by Harel, Mousset and Samotij essentially solved the

upper tail problem in the regime pn ≫ 1/n using ideas inspired by classical

moment method arguments of [JOR04].
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Subgraph counts: pn = Θ(1/n)

• The fully sparse case of pn = Θ(1/n), goes back to a famous question due to

Aldous, who had asked about the structure of graphs conditioned on having many

triangles.

This, along with the related question of the upper tail probability, was

answered by the works of Ganguly, Hiesmayr and Nam [GHN22] and Chakraborty,

van der Hofstad and den Hollander [CHH21].

• Note that kn = C · E [QH(G )] is no longer of interest because the expectation is

Θ(1). Instead, kn is chosen to be an arbitrary increasing function of n and upper

tail behavior along these sequences was examined.
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Subgraph counts: transition in tail behavior

In [GHN22], a very interesting phenomenon was observed:

Theorem (Ganguly, Hiesmayr, Nam ’22, simplified)

If k1/3
n log kn < Θ(log n), in the upper tail {QK3(G ) ≥ kn}, we observe almost kn

disjoint triangles. If k1/3
n log kn > Θ(log n), we observe an almost clique containing

almost all the excess triangles. In fact,

P(QK3(G ) ≥ kn) = Θ(exp(−C min(kn log kn, k
2/3
n log n)))

The first term is a Poisson tail, and the second one is due to the occurrence of a clique

of the correct size.

Note: The result in [GHN22] is much sharper, with exact thresholds and exact

exponent in the probability up to smaller order terms.
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Main result

In [Cho23], we extend the above to all regular graphs.

Here H is a connected regular

graph with degree ∆ and q vertices. Note that the critical pn to have Θ(1) copies of H

in expectation is now pn = Θ(n−2/∆).

Theorem (BRC, ’23)

For any kn ≥ 2 and pn = n−2/∆, we have

C1 exp
(
−C2 min(kn log kn, k

2/q
n log n)

)
≤ P(QH(G ) ≥ kn)

≤ C3 exp
(
−C4 min(kn log kn, k

2/q
n log n)

)
for constants C1,C2,C3,C4 depending only on H.

Here Ci are not necessarily optimal.
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Finner’s inequality

It is possible to handle certain classes of H via direct combinatorial arguments (like when H is
a cycle) which are essentially local. But due to the absence of a general structure among all
regular graphs, a global approach is needed. A key tool we use in our analysis is the following
result due to [Fin92]:

Lemma (Finner’s inequality)

Let µ1, µ2, . . . be probability measures on Ω1,Ω2, . . . respectively, and let Ω =
∏n

i=1 Ωi , µ =
∏n

i=1 µi .
Suppose A1,A2, . . . ,Am are nonempty subsets of [n] = {1, . . . , n}, and for any set A, set
µA =

∏
i∈A µi and ΩA =

∏
i∈A Ωi . If fi ∈ Lpi (ΩAi , µAi ) (with pi ≥ 1) for each i ∈ [m] such that∑

i :x∈Ai

p−1
i ≤ 1, ∀x ∈ [n] (1)

then we have the inequality ∫ m∏
i=1

|fi |dµ ≤
m∏

i=1

(∫
|fi |pi dµAi

)1/pi

The inequality remains true for general measure spaces if we require equality in (1) instead.
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Finner’s inequality - II

• Finner’s inequality generalizes Hölder’s inequality. We can put A1 = A2 = [n], and

p1 = p, p2 = q with p−1 + q−1 = 1, and check that all the conditions are satisfied.

• It also generalizes the celebrated Loomis-Whitney inequality. Consider d functions

gi : Rd−1 → R such that gi ∈ Ld−1(Rd−1). We are interested in the function

f : Rd → R

f (x1, . . . , xd )
def
=

d∏
i=1

gi (x−i ), x−i
def
= (x1, . . . , xi−1, xi+1, . . . , xd )

Set Ai = [n]− {i} and pi = d − 1. Then this falls into the framework of Finner’s

inequality, yielding the Loomis-Whitney inequality:

∥f ∥L1(Rd ) ≤
d∏

i=1

∥gi∥Ld−1(Rd−1) , [LW49]
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Finner’s inequality - III

A prototypical application for us is where say g is a graphon, and H is a graph. We

wish to find the homomorphism density of H in g. Then, we wish to bound

tH(g)
def
=

∫
[0,1]v(H)

∏
(u,v)∈E(H)

g(tu, tv )
∏

u∈V (H)

dtu

This falls into the framework of the above lemma if
• Ωv = [0, 1], µv = Unif[0, 1], ∀v ∈ V (H)

• Ae=(u,v) = {u, v}, ∀e ∈ E (H).
• fe=(u,v)(s, t) = g(s, t), ∀e ∈ E (H).

If H is ∆-regular, one may choose pi = ∆ for all i . For our purposes, we rely on this

lemma to extract bounds on expected subgraph counts, expected subgraph counts

containing given edges etc.
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Finner’s inequality

A straightforward but crucial consequence of this is the following lemma:

Lemma

Let G be a graph with E edges. Then,

QH(G ) ≤ C · Eq/2

where C = C (H) only depends on H.

When H is a cycle, this may be done via direct spectral arguments, but those

arguments do not extend to the regular case.
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Main steps of the proof

The harder part of the proof is the upper bound on the probability, and requires several

steps. The proof is essentially divided into two parts:

• If kn ≤ nε where ε = ε(H) is a constant depending on H, the technique we use

generalizes the ideas in [GHN22]. Crucially, in this part of the proof, we recover

the transition at k1−2/q
n log kn = Θ(log n).

• When kn ≫ poly log n, we use a modified version of the arguments due to

[HMS22] and [CHH21].

• Together, these cases cover all possible values of kn.
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Main ideas: Few copies

• When kn is small i.e. ≤ nε, following [GHN22] we divide the graph into subgraphs

spanned by copies of H.

Let S be such a spanned graph. The probability of it

occurring in G is (
n

v(S)

)
n−

2
∆
·e(S) ≤ n−

(
2e(S)
∆

−v(S)
)

• Note that if ∆ = 2 like in a triangle, then this is e(S)− v(S) which can be

interpreted via the number of excess edges in S after choosing a spanning tree,

which was crucially used in [GHN22].
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Main ideas: Few copies

• Unfortunately, the previous input is not available to us, and we instead prove a

lemma showing that if S has at least ℓ ≥ 2 copies of H, then it must satisfy

2e(S)
∆

− v(S) ≥ Ce(S), C = C (H).

restoring control on the probability in terms of the number of copies of H in it,

because e(S) ≳ ℓ2/q.

• Now consider a particular configuration of assigning kn copies of H to s + m

spanned components, where s of them contain a single copy of H, and the

remaining m contain ℓ1, . . . , ℓm copies of H (so that s +
∑

ℓi ≥ kn).

Then the probability that this particular configuration occurs is, by BK inequality,

at most

exp
(
−C log n

∑
ℓ
2/q
i

)
· P(s further disjoint copies of H)
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Main ideas: Few copies

• Due to the concavity of ℓ 7→ ℓ2/q, we see that it is not optimal to have multiple

spanned components with ≥ 2 copies of H. This competes with the probability of

s disjoint copies of H, resulting in the disjoint v.s. clique competition we see in the

result.

• There is some work involved in controlling the entropy of these assignments,

choices of spanned components and such, but I omit these details.
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Main ideas: Many copies

• When kn ≫ poly log n, the idea is the following: look for planted graphs which

increase the number of copies of H in G , and are also present in G w.h.p. if it

does have kn copies of H.

• These structures were defined by Harel, Mousset and Samotij [HMS22], and were

called seeds and cores. It is known that every seed contains a core.

• The definitions are somewhat technical, but the takeaway is that these objects are

modeled after cliques, but have a certain slack to them.

• The following crucial theorem justifies their importance:
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Main ideas: Many copies

Lemma

P(QH(G ) ≥ kn) ≤ (1 + o(1)) · P(Gn has a seed) = (1 + o(1)) · P(Gn has a core)

• This is proved via computing very high moments of X def
= QH(G )Z where

Z def
= 1G has no seed (in fact the moments are of order Ω̃(k2/q

n )).

• Using the above, our task is reduced to analyzing cores. To perform this, we prove

several structural results about cores (almost all of which require novel applications

of Finner’s inequality). Finally to finish the proof, we combine all these inputs via a

multiscale decomposition argument to control the various sources of entropy, but I

skip these details.
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Thank You!
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Appendix

Definition (Seeds and cores – Harel, Mousset, Samotij)

Let S ⊆ Kn be a subset of edges. We call S a if

• ESQH(G )
def
= E [QH(G ) | S ⊆ E (G )] ≥ ,

• e(S) ≤
[
Csε

−1
n log pn

]
k2/q
n

Due to the huge entropy of seeds, we define cores which also have the following

condition

• ESQH(G )− ES−eQH(G ) ≥
[

ε2n
Cs log(1/pn)

]
k1−2/q
n , ∀e ∈ S.

i.e., every edge contributes significantly. It is not hard to show that every seed has a

core.

The model we are trying to emulate here are cliques, but with some (logarithmic)

relaxation.
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