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1 Doob’s improvement on Markov
Recall that a martingale is a sequence of random variablesXn along with a filtrationFn, which remembers
its past via the (conditional) mean:

E
[
Xn+1

∣∣Fn

]
= Xn, ∀n ≥ 1.

A submartingale is a variant of this which is biased upwards:

E
[
Xn+1

∣∣Fn

]
≥ Xn, ∀n ≥ 1.

For submartingales, Doob proved the following beautiful inequality, which says that essentially the burden
of deviation falls on the last element in the sequence. Formally, if {Xn} is a nonegative submartingale

P (X∗
n ≥ a) ≤ EXn

a
, ∀a > 0,

where X∗
n = supj≤n Xj is the record at time n. Contrast this to vanilla Markov, which will show that

P (Xk ≥ a) ≤ E [Xk]

a
≤ E [Xn]

a
, ∀k ≤ n,
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so that

sup
k≤n

P (Xk ≥ a) ≤ E [Xn]

a
.

The proof of this fact uses the observation that, not only at fixed times t, but at arbitrary stopping times
σ, the “projected growth” in the future is only positive, i.e.,

E [Xσ] ≤ E [Xn] , σ is a stopping time always ≤ n.

Of course, finding the maximum is not a stopping time! But, we don’t need to. To check if the supremum
is bigger than a, we can just stop as soon as some element is bigger than a, which will produce a stopping
time:

σ
def
= inf{k ≤ n : Xk ≥ a},

with edge cases handled appropriately.

2 Exponentials of martingales

If Xn is a martingale, then Yn
def
= exp (Xn) is a submartingale. To see define the martingale difference

sequence Dn
def
= Xn −Xn−1 for n ≥ 1, and observe

E [Yn+1|Fn] = E [exp (Xn +Dn+1) |Fn]

= exp (Xn) · E [exp (Dn+1) |Fn]
Jensen
≥ Yn · exp (E [Dn+1|Fn]) = Yn,

since E [Dn+1|Fn] = E [Xn+1 −Xn|Fn] = 0. In fact, exponential is not special. This holds for any
convex ϕ.

We have that exponentials of martingales are submartingales, and have an improvement over Markov
for submartingales. This should motivate us to check if Chernoff can be improved. Indeed, it can, and the
result is called Azuma-Hoeffding:

Theorem 1 (Azuma-Hoeffding). LetXn be a martingale w.r.t the filtrationFn, and letDn be the difference
sequence. Assume that Dn is sub-Gaussian with constant c2n, conditioned on Fn−1, i.e.,

E
[
exp(λ(Dn − EDn))

∣∣Fn−1

]
≤ exp

(
λ2c2n/2

)
.

Then, the supremum of the martingaleXn−X0 is also sub-Gaussian with constant
∑n

k=1 c
2
k, in particular,

has the tail

P ((X· −X0)
∗ ≥ a) ≤ exp

(
− a2

2
∑n

k=1 c
2
k

)
.

In the most common version of this statement: Dn ∈ [An, Bn] with Bn − An ≤ ℓn where Bn, An are
predictable processes. The maximal sub-Gaussian constant of such a random variable is ℓ2n/4, yielding

P ((X· −X0)
∗ ≥ a) ≤ exp

(
−2 · a2∑n

k=1 ℓ
2
k

)
.
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3 What if I don’t care about martingales
But almost surely, you care about (complicated) functions F of many independent random variables
X = (X1, . . . , Xn). In such cases, you can define the Doob martingale (which is a “free”-martingale):

Zn
def
= E

[
F
∣∣ X1, . . . , Xn

]
, n ≥ 1.

This is a martingale, and we can try to apply Azuma-Hoeffding. A condition on F is needed to satisfy
A-H though. We impose

∆i
def
= sup

X
sup
y

[F (X)− F (X′)] < ∞, X′ = X except X′
i = y,

that is, the maximum amount F (X) can change by changing the ith coordinate.
This assumption allows us to bound the difference sequence of the Doob martingale, since if we

replace Xk by an independent sample from the distribution of Xk and call this new entity X′,

Zk = E [X|Fk] ,

Zk−1 = E [X′|Fk] .

The rest is not difficult, yielding the McDiarmid inequality:

Theorem 2 (McDiarmid inequality). Let X = (X1, . . . , Xn) be independent, and let ∆i defined as above
are finite. Then

P (F − EF ≥ a) ≤ exp

(
−2 · a2∑

i≤n∆
2
i

)
.

Replacing F by −F and union-bounding we get

P (|F − EF | ≥ a) ≤ 2 exp

(
−2 · a2∑

i≤n∆
2
i

)
.

Remark: There is no restriction on the spaces in which Xi take values. They don’t need to be i.i.d.
either.

Side note: For the “resampling” Markov chain, McDiarmid shows concentration of the stationary
measure. The related Poincare-type bounds for such chains are also available.

4 Chromatic numbers via vertex revealing
Given an undirected graph G, its chromatic number is the smallest number of colors required to color its
vertices with no two adjacent vertices having the same color. For example, the complete graph Kn has
chromatic number n, and the path Pn has chromatic number 2 unless n = 1. Our goal is to understand
the chromatic number of Erdős–Rényi graphs G(n, p) for some particular choices of p.

Firstly, think of the chromatic number N as N({Xe}e) as a function of the boolean variables given by
the presence/absence of edges e. Changing the status of some edge cannot change the chromatic number
by more than 1. Clearly, if we add an edge, it can increase N by at most one since we can just use a new
color. Conversely, if we drop an edge and chromatic number drops by more than 1, we can reverse the
change to obtain a contradiction.
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Thus

P (|N − EN | ≥ a) ≤ 2 exp
(
≈ −4a2/n2

)
,

a horrible bound since this says that the fluctuation order is at most n, which is trivial, since the chromatic
number of bounded between 0 and n.

We can do much better if we realize that the logic above holds even if we change the status of any
vertex! That is, even if we change the status of all edges adjacent to a given vertex v, the chromatic
number changes by at most 1. Observe that our variables Xv are now Xv = (Xe : e = (v, w), w ≤ v)
(assuming some order on the vertices), which lie in different spaces – but that does not harm us, yielding
the bound

P (|N − EN | ≥ a) ≤ 2 exp
(
−2a2/(n− 1)

)
since ∆1 = 0, showing a fluctuation order of n1/2, much better!

5 Chromatic numbers exhibit constant order fluctuation
Much more is known about chromatic numbers. When α > 1/2, N is in fact concentrated on two values!
We however will only show

Theorem 3. Let α > 5/6, and let G ∼ G(n, pn
def
= n−α). Then for any ε > 0, there is a number

ϕn = ϕn(α, ε) such that

P (N ∈ [ϕn, ϕn + 3]) ≥ 1− ε.

Proof. The proof proceeds via showing that there is a choice of ϕn such that with high probability,

• there is a Oε(
√
n) size subset of vertices, except which the whole graph is ϕn colorable,

• and, every subset of this size is 3-colorable,

combining which we get our result.
We choose ϕn to be the smallest integer such that

P (G ∼ G(n, pn) is ϕn colorable) > ε/3.

Step 1: Let F = F ({Xv}v) be the function of the vertex revealing variables Xv defined above,
counting the smallest size of a subset whose removal ensures that G is ϕn colorable. For example,
P(F = 0) > ε/3, by assumption above. This fact will be used later. We now claim: F satisfies bounded
differences with ∆v = 1.

To see why, fix v and observe that (1) F is monotone in the number of edges adjacent to v, and (2)
between the cases where there are no edges adjacent to v versus every edge adjacent to v, the gap in F
can be at most 1 since we can drop v itself from the graph.

This enables us to apply McDiarmid’s inequality to assert:

P
(
F − EF ≤ −b

√
n− 1

)
≤ exp

(
−2b2

)
= ε/3,

where b = b(ε) is chosen so that exp (−2b2) = ε/3. We will now use these facts to bound EF , which
will then allow us to derive a tail on F without the EF additive term.
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Observe that if EF > b
√
n− 1, then

P (F = 0) ≤ P
(
F − EF < −b

√
n− 1

)
≤ ε/3,

but we saw earlier that P (F = 0) > ε/3. So EF ≤ b
√
n− 1.

Using McDiarmid in the opposite direction then yields

P
(
F ≥ 2b

√
n− 1

)
≤ P

(
F − EF ≥ b

√
n− 1

)
≤ exp

(
−2b2

)
= ε/3,

finishing the proof of Step 1.
Step 2: This will be a proof by first moment, where we count the number Y of the number of minimal

vertex subsets of size at most c
√
n such that the induced subgraph in G is not 3-colorable. The claim is

that w.h.p. Y = 0.
The requirement is of course not lossy since we want to show that there are no non-3-colorable “small

subsets”. However, imposing minimality allows us to control the subsets via the following observation:
Let W be a subset of vertices constituting a minimal subset. Then, each vertex in W has degree at least
3 in W . If not, let v be such a vertex. Dropping v cannot make the graph 3-colorable, since if we add v
back in, it will still be 3-colorable as we can just pick the color not adjacent to v (of which there is at least
one, since v has degree two at most). Thus W couldn’t possibly be minimal non-3-colorable.

Suppose |W | = ℓ. The above observation then means that the number of edges induced by W satisfies
|E(W )| ≥ 3ℓ/2. Thus, the probability that W is a minimal subset is at most the probability that it has
3ℓ/2 edges induced in it: ( (ℓ

2

)
3ℓ/2

)
p3ℓ/2n .

Therefore, a first moment bound yields

P (Y > 0) ≤ EY

≤
c
√
n∑

ℓ=4

(
n

ℓ

)( (ℓ
2

)
3ℓ/2

)
n−3ℓα/2

≤
c
√
n∑

ℓ=4

(en
ℓ

)ℓ( eℓ2

3ℓ/2

)3ℓ/2

n−3ℓα/2

=

c
√
n∑

ℓ=4

exp

(
5ℓ

2
+

(
1− 3α

2

)
ℓ log n+ 2ℓ log ℓ− 3ℓ

2
log

(
3ℓ

2

))

≤
c
√
n∑

ℓ=4

exp

(
5ℓ

2
+

(
1− 3α

2

)
ℓ log n+

ℓ

2
log ℓ

)
.

It is tempting to substitute ℓ = c
√
n but we have to be careful since 1 − 3α/2 < 0. We can substitute

ℓ = c
√
n in the log ℓ and not elsewhere:

≤
c
√
n∑

ℓ=4

exp

(
c′ℓ+

(
1− 3α

2
+

1

4

)
ℓ log n

)
, c′ = 5/2 + (1/2) log c.
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If α > 5/6, 1− 3α/2 + 1/4 = δ < 0, so that the first term is dominant, showing that the sum goes to 0.
Let c = b from above, and choose n large enough so that this is smaller than ε/3.

Combining all the results above concludes the proof.
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