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1. Log-concave distributions

• A distribution P on R is log-concave if its density f is log-concave, i.e., dµ/dλ ∝ exp(f(x)) where f is a
concave function. These measures appear in optimization and sampling.

• We call a function κ-strongly concave if f(x) + κ ∥x∥2 /2 is concave. For smooth f , this is equivalent to
∇2f ⪯ −κI . The corresponding measures are called κ-strongly log-concave. For instance, the standard
Gaussian is log-concave with f(x) = −∥x∥2 /2. In fact, it is strongly log-concave with κ = 1.

• A wide range of facts are known for such distributions. The canonical Markov process associated with these
measures are called Langevin diffusions. They are reversible with respect to the measure and are defined
via the SDE

dXt = ∇f(Xt)dt+
√
2dBt,

• An analysis of this diffusion yields two remarkable facts (whenever the objects are defined):
– Poincare inequality:

Varµ(ϕ) ⩽
1

κ

∫
∥∇ϕ∥2 dµ.(1)

– Log-Sobolev inequality:

KL (ν∥µ) ⩽ 1

2κ

∫ ∥∥∥∥∇ log
dν

dµ

∥∥∥∥2 dν.(2)

• Another nontrivial fact here is that log-concave distributions are closed are marginalization.

2. Mean-field approximations

• Suppose f : Rd → R is such that f(x) =
∑

i fi(xi) for some κ-concave fi, then so is f . The Gibbs
measure µ ∝ exp(f) is then a product law. The question is, given a general f , how close is it to a product
measure.

• This close-ness can be measured via the KL divergence. What is the product law ν = ⊗νi which minimizes
KL (ν∥µ)?

• Let us expand this. We have

KL (ν∥µ) =
∫

log
dν

dµ
dν

=

∫
log

dν

dµ
dν

=

∫
log dν − (f − logZ)dν

= logZ − (Eνf +H(ν)) .
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where H(ν) = −
∫
log ν · dν is the differential entropy of ν. This also shows that the optimizer produces

the best mean-field approximation in terms of the partition function. Recall, via a trivial reformulation, that
the optimizer of

Eνf +H(ν)

over all ν was the Gibbs measure µ ∝ exp(f). To get a sense of H(ν), note that

H(N(0, σ2)) = −EX

[
log

(
1√
2πσ2

exp(−X2/2σ2)

)]
=

1

2
log(2πσ2)− 1

2σ2
E[−X2] =

1

2
log(2πeσ2)

which becomes larger with increasing σ.

3. A simple heuristic

• Ignoring questions about existence and uniqueness, suppose ν = ⊗νi is an optimizer of Eνf+H(ν). Write
ν = ν1 ⊗ ν>1 where ν>1 = ⊗i>1νi. Then, H(ν) = H(ν1) +H(ν>1).

• Further,
Eνf = EX∼ν1,Y∼ν>1f(X,Y ) = E [E [f(X,Y )|X]]

Thus defining
f1(x) = EY∼ν>1 [f(x, Y )] = E(X,Y )∼νE [f(X,Y )|X = x]

we have that ν1 maximizes
Eν1f1 +H(ν1).

and thus dν1/dλ ∝ exp(f1).
• This results in the fixed point equation for an optimizer ν:

dνi
dλ

(xi) ∝ exp (EX∼ν [fi(X)|Xi = xi]) .(3)

4. Analyzing the fixed point equation

• Let us consider a solution ν to the fixed point equation (3), and examine the consequences.
• Fix a coordinate, say 1, and consider f1(x1) = EX∼ν [f(X)|X1 = x1], which appears as the log-density of
ν1. Then

f ′
1(x1) = EX∼ν [∂1f(X)|X1 = x1],

due to the independence in ν. Another derivative yields

f ′′
1 (x1) = EX∼ν [∂11f(X)|X1 = x1] ⩽ −κ.

since ∂11f(X) =
(
∇2f(X)

)
11

⩽ −κ. Thus, f1 is κ-strongly concave in dimension one, and thus ν1 is
κ-strongly log-concave.
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• Applying the Log-Sobolev inequality in (2) to ν1 yields

KL (ν∥µ) ⩽ 1

2κ

∫ ∥∥∥∥∇ log
dν

dµ

∥∥∥∥2 dν =
1

2κ
EY∼ν

[
d∑

i=1

(EX∼ν [∂if(X)|Xi = Yi]− ∂if(Y ))2
]

=
1

2κ

d∑
i=1

EY∼ν

[
E
[
(EX∼ν [∂if(X)|Xi = Yi]− ∂if(Y ))2

∣∣∣Yi]]

=
1

2κ
EY∼ν

[
d∑

i=1

VarX∼ν [∂if(X)|Xi = Yi]

]

At this point, observe that since each factor of νi is κ-strongly log-concave, so is ⊗k ̸=iνk. Therefore, the
Poincare inequality (1) is in play, yielding

VarX∼ν [∂if(X)|Xi = Yi] ⩽
1

κ
EX∼ν

∑
j ̸=i

(∂ijf(X))2
∣∣∣Xi = Yi

 .

Putting things together, we get

KL (ν∥µ) ⩽ 1

2κ2
EY∼ν

 d∑
i=1

EX∼ν

∑
j ̸=i

(∂ijf(X))2
∣∣∣Xi = Yi


=

1

κ2

∑
i<j

EY∼ν

[
EX∼ν [(∂ijf(X))2|Xi = Yi]

]
=

1

κ2

∑
i<j

EX∼ν [(∂ijf(X))2].

• Recalling that this KL divergence is also the gap in the Gibbs variational principle, this shows that there is
a product law ν satisfying

0 ⩽ logZ − (Eνf +H(ν)) = KL (ν∥µ) ⩽ 1

κ2

∑
i<j

EX∼ν [(∂ijf(X))2].

• As proved in the main paper, this optimizer exists, invoking the weak-closedness of the set of product
measures. We will not pursue these details here.

5. Applications

• Firstly observe that if f is linearly separable, i.e., µ is already product, ∂ijf = 0 for all i ̸= j. Hence, the
error is zero here, as should be the case.

• As a broad application, let us consider a general class of f as follows:

f(x) =
∑

V (xi) +
∑
i<j

JijK(xi − xj),

for a κ-concave potential V , fixed non-negative, doubly stochastic interaction matrix J and an even concave
kernel K. The potential V will serve to “confine” the measure, and the K and J produce an interaction
between the coordinates.
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• Firstly, this is κ-concave. To see this, observe that the Hessian of the potential part itself is ⪯ −κI ,
so it suffices to show that everything else is negative-definite, for which, in-turn, it suffices to show that
(x, y) 7→ K(x− y) is concave if K is. For this, note that

∇2K(x− y) = K ′′(x− y) ·

[
1 −1

−1 1

]
.

The last matrix has eigenvalues 0 and 2, so the Hessian is negative-definite, since K ′′ ⩽ 0.
• Then, for a < b,

∂abf(x) =
∑
i<j

Jij∂abK(xi − xj)

= −JabK
′′(xa − xb)

since

∂abK(xi − xj) = ∂a (∂bK(xi − xj))

= ∂a
(
δibK

′(xi − xj)− δjbK
′(xi − xj)

)
= δiaδibK

′′(xi − xj)− δaδibK
′′(xi − xj)− δiaδjbK

′′(xi − xj) + δjaδjbK
′′(xi − xj)

= K ′′(xi − xj) (δiaδib − δjaδib − δiaδjb + δjaδjb) ,

which is zero when a < b except when a = i, b = j in which case its −K ′′(xa − xb).
• Thus, the gap is immediately seen to be bounded by

1

κ2

∑
a<b

J2
ab ·

∥∥K ′′∥∥2
∞ ⩽

1

2κ2
· tr(J2) ·

∥∥K ′′∥∥2
∞ .

If κ = Θ(1), K ′′ is bounded and tr(J2) = o(n), the error is o(n). But why is n the right scale? To see
this, let us compute the “mean-field partition function”, i.e., the supremum of the following quantity over
all product ν = ⊗νi:

Eνf +H(ν) =

n∑
i=1

EνiV +
∑
i<j

Jij · E(X,Y )∼νi⊗νjK(X − Y ) +

n∑
i=1

H(νi).

It turns out that one can prove the following lemma:

Lemma 1. Let µ1, . . . , µn be n distributions on R. Then, there is a random vector X with marginals νi,
such that

H(X) ⩾ n−1
n∑

i=1

H(µi)

where X is the average of the entries of X .

This, and the concavity ofV,K allows one to reduce the optimization problem above to a one-dimensional
problem, yielding that the optimizer is i.i.d., with marginals νi = ν∗, say,

Eνf +H(ν) = n

(∫
V dν∗ +

1

2

∫
K(x− y)dν∗(x)dν∗(y) +H(ν∗)

)
The inner problem has no dependence on n, and thus the quantity is Θ(1), making the entire quantity Θ(n).
This shows the requirement of o(n) for the error.
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• As a concrete instance, consider a Hamiltonian similar to what was considered last time, only this time we
will make things “spherical”. Choose V (x) = −x2/2, so that κ = 1, and choose K(x) = −x2. Further
suppose, J = A/d where A is the adjacency matrix of a d-regular graph. Then,

• Then, the overall Hamiltonian looks like

f(x) = −

1

2

∑
x2i +

1

2d

∑
(i,j)∈E

(xi − xj)
2

 .

This is essentially n Gaussians on the vertices, weighted by the “interaction” which favors similar Gaussians
on nearby vertices. This model is basically the GFF on this graph.

• The mean-field approximation is active when tr(J2) = o(n). In terms of the adjacency matrix, the condition
is therefore tr(A2) = o(nd2). Since tr(A2) = |E| = O(nd), this holds if d → ∞, the usual “mean-field”
condition.

• Interestingly, in this case, the actual geometry of the regular graph does not stop the mean-field solution
being i.i.d.

6. Appendix

• We deliberate on the proof of the lemma. The general fact that is true, is that for a collection of reals
t1, . . . , tn and measures µn, the analogous result holds with 1/n replaced by ti.

• Let us look at n = 2, so that we have two measures on R, µ, ν, and we want to exhibit a coupling. The point
is that −H is displacement convex in 2-Wasserstein space. That means, that along a Wasserstein geodesic
from µ to ν, say µt, the function t 7→ −H(µt) is convex.

Further, from Brenier, we know that the geodesic is simply ((1 − t)id + tT )#µ for an optimal map
T : R → R such that T#µ = ν. Then consider the coupling (X,T (X)) produced by Brenier. Displacement
convexity finishes the proof.
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