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Introduction



• Starting with an i.i.d. sequence of random variables a1, a2, . . . , a
′
1, a

′
2, . . . , sampled from

some common law L (centered, variance 1, with exponential moments), let us form the random

Fourier series

Sn(t) =
n∑

k=1

k−θ
{
ak cos(2πkt) + a′k sin(2πkt)

}
t ∈ [0, 1].

• How does this look like in the n → ∞ limit, for some exponent θ ∈ (0, 1)?

• To get started, consider the variance of Sn(t):

Var(Sn(t)) =
n∑

k=1

k−2θ
{
cos2(2πkt) + sin2(2πkt)

}
=

n∑
k=1

k−2θ.

• Thus, one expects a qualitative change in the behavior of Sn(t) at θ = 1/2, when

Var(Sn(t)) = Θ (log n). This is the regime we will focus on.
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• A calculation shows that Sn is log-correlated in the following sense. For t, s ∈ [0, 1],

Cov(Sn(t),Sn(s)) = min

{
log

1

|t − s|
,Var(Sn(0))

}
+ something uniformly bounded,

• To unpack this a bit, recall that Var(Sn(0)) = O(log n). So informally,

Cov(Sn(t),Sn(s)) =

log n, if |t − s| ≪ n−1,

log 1
|t−s| , if |t − s| ≫ n−1,

up to some bounded error. Observe that the singularity occurs only when s and t are arbitrarily

close.

• Due to diverging one-point variance, referred to in physics as an ultraviolet divergence, this

series does not converge as a function. However, the limit can be viewed as a random

distribution, in H−ε for any ε > 0.
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The random Fourier series model (left) is an example of a log-correlated Gaussian field,

instances of which appear widely in mathematics and statistical physics.

The canonical example is the Gaussian free field (GFF) (right, in heightmap, due to Marek

Biskup) in 2D (the log-correlation follows from the logarithmic behavior of the Green’s function

in 2D).
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• Log-correlated fields (LCFs) come up in diverse contexts, including the study of fluid

turbulence in physics, log-characteristic polynomials of random unitary matrices, and the

Riemann zeta function.

• LCFs also have a rich universality theory, especially in the Gaussian case, where the

universality of the maxima and related processes have been studied extensively recently.



Figure: Structure of a generic LCF (lighter colors are higher values). There is a unit randomness at

each “scale”, inducing an additional unit correlation between two points separated by a distance

smaller than the scale. Since only log-many scales are bigger than the distance between two points, the

covariance is logarithmic.



• The informal structure described above inspires the definition of a “model” log-correlated

process, called the branching random walk.

• Observe that if s, t ∈ (0, 1) are such that |s − t| ∈ [2−k−1, 2−k), then

Cov(Yn(s),Yn(t)) = kσ2 for all sufficiently large n, indicating a log-correlated structure.

• To match with our definition of log-correlation, which required log(1/|x − y |) covariance, we
will then need log(1/2−k) to match kσ2, which will be the case when σ2 = log 2.
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Inspired by Mandelbrot’s theories on intermittency in fluid turbulence, Kahane (1985)

constructed the Gaussian multiplicative chaos, as a way to define the exponential of

log-correlated Gaussian processes as a random measure. These measures are supposed to

exhibit intermittency, i.e., stretches of calm punctuated by bursts of fractal behavior.



• Let us briefly outline the construction for Sn(t), assuming for the moment that the noise

variables are standard Gaussian.

• For any intermittency exponent γ ≥ 0, define the density (not probability density!)

ρn(t) = ργ,n(t) =
eγSn(t)

EeγSn(t)
= exp

{
γSn(t)−

γ2

2
· Var(Sn(0))

}
.

The additional factor of exp
(
−γ2

2 · Var(Sn(0))
)
is a renormalization factor, which ensures that

Eρn(t) = 1.
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• Thus, E
∫
ρn(t) = 1. Thinking of ρn as a “probability density on average”, we also define

the random measure

µn = µγ,n(A) =

∫
A

ρn(t) dt.

• It turns out that µn(A) is a martingale for each A, with a nontrivial limit µ(A) as long as

γ <
√
2 (for γ ≥

√
2, the limit is zero this is because the expectation comes from scales larger than those

in a typical sample). This random measure is the Gaussian multiplicative chaos (GMC) for the

“process” S(t).

• This general procedure for exponentiating log-correlated Gaussian processes has also been

used as a key tool in quantum field theory, for instance in the construction of the Liouville

quantum gravity (LQG) measure, as the exponential of the 2D GFF.
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Figure: GMC for the random Fourier series (top), and the GMC for the 2D Gaussian free field, also

known as the Liouville Quantum Gravity measure (bottom). LQG picture due to Marek Biskup.



• A couple of natural questions arise:

− Is there a similar construction for non-Gaussian noise?

And if so,

− is there an invariance principle connecting the non-Gaussian multiplicative chaos to the

GMC?

• In 2016, Junnila showed that the basic objects involved are well-defined. That is,

− the corresponding Fourier series is log-correlated, and

− under some suitable conditions, the GMC construction described earlier goes through,

yielding a multiplicative chaos measure.

These developments then open up the possibility of studying the behavior of these newly

constructed non-Gaussian measures.
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Main result



Theorem (B.R.C.-Ganguly, 2025)

Let µa be the multiplicative chaos corresponding to the random Fourier series with noise

variables {ai , a′i} sampled from L and µg be the analogous GMC constructed out of standard

Gaussians {gi , g ′
i }.

Then for any γ ∈ (0,
√
2) one may couple the a and g variables such that

µg ≪ µa ≪ µg ,

i.e., they are mutually absolutely continuous a.s.

• This resolves a recent conjecture due to Kim and Kriechbaum, who only proved this for

γ > 1.

• Note that the two chaos measures cannot be coupled to be equal in general (and thus

absolute continuity is a natural target), because any coupling error between a1 and g1 (and a′1

and g ′
1) will cause a relative shift between the two log-correlated fields. This error cannot be

“corrected” by subsequent terms.
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As indicated in the title for this talk, the proof strategy crucially involves a high-dimensional

CLT. We will spend the next few slides to see how the problem can be reduced to such a

question.



Define the partial sums

Sn,a(t) =
n∑

k=1

k− 1
2

{
ak cos(2πkt) + a′k sin(2πkt)

}
,

Sn,g (t) =
n∑

k=1

k− 1
2

{
gk cos(2πkt) + g ′

k sin(2πkt)
}
,

so that the corresponding multiplicative chaos measures are

µa = lim
n→∞

µn,a, µg = lim
n→∞

µn,g ,

where the finite n measures are defined as

µn,a(A) =

∫
A

ρn,a(t) dt =

∫
A

eγSn,a(t)
/

EeγSn,a(t) dt,

µn,g (A) =

∫
A

ρn,g (t) dt =

∫
A

eγSn,g (t)
/

EeγSn,g (t) dt.
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A candidate for the derivative dµa

dµg
is the limit of the finite n-derivatives

Rn(t) =
dµn,a

dµn,g
(t)

=
eγSn,a(t)

/
EeγSn,a(t)

eγSn,g (t)
/

EeγSn,g (t)
.

It is not hard to show that EeγSn,a(t) ≈ EeγSn,g (t) (since this is a one-dimensional CLT problem

involving only the marginal at time t), so

Rn(t) ≈ exp
(
γ
{
Sn,a(t)− Sn,g (t)

})
.

Thus, the goal is:

Couple the a and g variables such that the difference Sn,a−Sn,g is uniformly controlled.
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Recall that Sn,a(t) accumulates O(1) variance per dyadic scale, i.e.,

Sn,a(t) =

log2 n∑
ℓ=1

Xℓ,a(t), (sum over dyadic scales)

where Xℓ,a(t) is the ℓ-th scale

Xℓ,a(t) =
2ℓ−1∑

k=2ℓ−1

k−1/2
{
ak cos(2πkt) + a′k sin(2πkt)

}
,

with variance
∑2ℓ−1

k=2ℓ−1 k−1 ≈ log 2.

We will attempt to couple the a and g variables, scale-by-scale, such that the error per

scale, |Xℓ,a − Xℓ,g | is controlled, in a summable fashion. For instance, a uniform bound of

ℓ−2 will suffice. This is plausible because Xℓ,a is more homogenous with increasing ℓ.
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Figure: Sinusoids ak cos(2πkt) + a′k sin(2πkt), colored by the dyadic scale in which k belongs. These

are scaled and added up to form S7,a(t).



Reducing to a finite-dimensional problem



Figure: We discretize [0, 1] (approximately) dyadically in space, with resolution depending on the scale.

This produces a hierarchical model. It will suffice to couple only at the mesh points.



The mesh resolution is chosen

approximately dyadically, so that the

oscillation of the sinusoids are

approximately constant over each interval.

Thus, it is enough to match the values

of Sn,a(t) and Sn,g (t) at the endpoints

of each interval, as marked by the

dots.

We will now focus on coupling in one

scale, say scale ℓ.
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Focusing just on the cosine terms (the sine part is analogous), that is, we will couple Cℓ,a(t)

and Cℓ,g (t) where

Cℓ,a(t) =
2ℓ−1∑

k=2ℓ−1

k−1/2ak cos(2πkt), Cℓ,g (t) =
2ℓ−1∑

k=2ℓ−1

k−1/2gk cos(2πkt).

In view of the discretization, let us define vectors w1, . . . ,wN (where N = 2ℓ−1 is the size of

the scale) with values given by the cosines at the mesh points. Then, it suffices to couple

Aℓ =
2ℓ−1∑

k=2ℓ−1

1√
k
wkak , Gℓ =

2ℓ−1∑
k=2ℓ−1

1√
k
wkgk ,

such that the error (as a function of ℓ) is summable, w.h.p.

The coefficient 1√
k
can be converted into a global 1√

2ℓ−1
coefficient, with no change in behavior, since k varies

by at most a constant factor in each scale.

This is a high-dimensional CLT problem, where the increments are low-rank.
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However, the vectors wk are of dimension d given by the mesh size, which is also ≈ 2ℓ, same

order as that of the number of vectors N.

In such a situation, a CLT usually fails. Informally, a CLT requires sufficient “homogenization”

in every direction, which cannot happen in general unless d ≪ N. We will go over an example

demonstrating this later.

A hint to overcome this is to use the

intermittency of the multiplicative chaos. As

noted earlier in the case of the branching

random walk, these measures are supported on

γ-thick points.

Thick points are polynomially rarer, with

their count scaling like 2ℓ(1−γ2/2).
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The message: It suffices to couple the processes only near thick

points of either field, since the two measures are zero elsewhere.



This last observation enables a reduction to the following generic CLT question:
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{ak}nk=1 and {gk}nk=1, can one construct a coupling such that∥∥∥∥∥ 1√
n

n∑
k=1

vkak −
1√
n

n∑
k=1

vkgk
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∞

is small? We need to couple in L∞ because we wish to control the Radon-Nikodym derivative uniformly across

all thick points.

Note that in our case, d is the number of thick points, i.e., d ≈ 2ℓ(1−γ2/2) for level ℓ,

while n ≈ 2ℓ. Then d is polynomially smaller than n, but to cover γ close to 0, the

ratio d/n can be nε for arbitrarily small ε > 0.



A new high-dimensional CLT



Theorem (L∞ coupling CLT, exponential tails – B.R.C.-Ganguly, 2025)

Let v1, . . . , vn be n vectors in Rd with ∥vk∥22 ≤ d for all k (in our application, we actually have

∥vk∥∞ ≤ 1 since sin and cos are bounded).

Suppose a1, . . . , an are i.i.d. random variables

sampled from a centered law L with unit variance and exponential tails, and let g1, . . . , gn be

i.i.d. standard Gaussians. Then there is a coupling of {ak} and {gk} such that∥∥∥∥∥ 1√
n

n∑
k=1

vkak −
1√
n

n∑
k=1

vkgk

∥∥∥∥∥
∞

≲ log4 n ·
(
d

n
· (∥U∥+ 1)

)1/4

,

with probability ≥ 1− O(n−100). Here U is defined as

U =
1

n

n∑
k=1

vkv
T
k .
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• Exponential tails. The result indeed works for any stretched exponential tail, with no

change to the probability, except the poly log factor. The optimal tail assumption is left as an

interesting open question.

• Dimension bound d ≤ n. A simple example can be furnished with vi =
√
dei mod d . The

coordinates are independent. To lower bound the L∞ norm, observe that the L2 lower bound
simply is

√
d times the L2 error in one-coordinate which is

√
d/n. Fact: (a) The Wasserstein-2

distance factorizes as

W2(µ⊗ µ′, ν ⊗ ν′) =
√

W 2
2 (µ, ν) +W 2

2 (µ
′, ν′)

and (b) a sum of n i.i.d. subexponential variables can be coupled to N (0, n) with O(1) error, w.h.p. Thus,

the overall L2 lower bound is d/
√
n, and consequently the L∞ error is at least

√
d/n.
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• 1/4 is likely not the optimal exponent, 1/2 is more likely.

• U contains information about the “isotropy” of the vectors. Smaller norms mean that the

vectors are spread out.
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Note that if ∥U∥ is sub-polynomial, the error is small as soon as d/n is polynomially small,

which allows us to cover γ close to 0. Recall that in our application, d ≈ 2(1−γ2/2)ℓ and n ≈ 2ℓ. We

crucially rely on the Fourier structure of U to obtain a polynomial in ℓ bound on the spectral norm.

Further, note that the trivial bound on ∥U∥ is tr(U) = 1
n

∑n
i=1 ∥vi∥

2 ≤ d . Using this bound in

our result, we recover the threshold d2/n, which is small, in our application, only when γ > 1,

recovering the result of Kim and Kriechbaum.
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Coupling CLTs have been studied extensively in the past, although results in L∞ are rare. The

only one we are aware of is the following result due to Yurinskii, which was used in Kim and

Kriechbaum’s work, as well as extensively in the broader literature.

Theorem (Yurinskii coupling, 1978)

In the same setting as earlier,

P

(∥∥∥∥∥ 1√
n

n∑
k=1

vkak −
1√
n

n∑
k=1

vkgk

∥∥∥∥∥
∞

> δ

)
≲ min

t≥0

(
t2

(δ
√
n)3

·
n∑

k=1

∥vk∥22 ∥vk∥∞ + f (t)

)
,

where f (t) = P (maxj=1,...,d |Zj | > t) with Z1, . . . ,Zd i.i.d. standard Gaussians.

Specializing to our case with ∥vk∥∞ ≤ 1 and δ = o(1), the effective bound is d√
n
(upto polylog

factors), which is small only when d2 ≪ n.
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On the other hand, there has been significant recent progress on L2-coupling CLTs, better

known as Wasserstein-2 CLTs, under i.i.d. assumptions:

Theorem (Zhai ’16, Eldan-Mikulincer-Zhai ’18)

Let X1, . . . ,Xn be i.i.d. random variables in Rd with EX1 = 0, ∥X1∥2 ≤ β, and Cov(X1) = Σ.

Then there is a coupling of X1, . . . ,Xn and Z ∼ N (0,Σ) such that∥∥∥∥∥ 1√
n

n∑
i=1

Xi − Z

∥∥∥∥∥
2

≲

√
d

n
· β2 log n.

This result is optimal, up to logarithmic factors. Similar to an example earlier, a

d-dimensional random walk with steps
√
dei will suffice.
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Zhai’s 2016 result uses the Talagrand transportation inequality, combined with a Lindeberg

strategy, meanwhile Eldan, Mikulincer, Zhai’s 2018 result uses Wasserstein-2 bounds for

martingale embeddings. Both of these strategies fail in our case, due to the lack of any

L2-technology.

Also, in general, a Lindeberg-type strategy that does not account for the cancellations induced

by different vectors is not expected to succeed. In fact, Yurinskii’s 1978 result uses a similar

strategy, and as we saw, fails to capture the d/n threshold.
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Instead, inspired by Strassen’s argument for a

one-dimensional CLT, we employ a path-wise

approach, by first Skorokhod-embedding the

random variables. That is, we consider

independent Brownian motions B1, . . . ,Bn, and

construct stopping times τ1, . . . , τn such that

B i
τi ∼ L, the common law of the aks.

Considering the stopped processes B i
t∧τi as

shown, we can then represent n−1/2
∑n

k=1 vkak

as Φ∞, where Φt is the process

Φt =
1√
n

n∑
k=1

vkB
k
t∧τk
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In fact, Φ can be written differentially as

dΦt =
√
Γt dWt , Φ0 = 0,

for another Brownian motion W (using a straightforward change of variables), where

Γt =
1

n

n∑
k=1

vkv
T
k 1τk>t .

It is natural to also consider the “averaged process” Ψt given by

dΨt =
√

EΓt dWt , Ψ0 = 0.

Due to the deterministic covariance structure, Ψ∞ is a Gaussian vector, and, as easily checked

via a quadratic variation computation, Ψ∞ has the same covariance as Φ∞. Thus, we have a

coupling between n−1/2
∑n

k=1 vkak = Φ∞ and n−1/2
∑n

k=1 vkgk = Ψ∞.
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The coupling error ∥Φ∞ −Ψ∞∥∞ can be analyzed by studying the gap process Φt −Ψt which

admits the differential representation
(√

Γt −
√
EΓt
)
dWt . This reduces to understanding the

error ∥∥∥√Γt −
√
EΓt
∥∥∥ , where Γt =

1

n

n∑
k=1

vkv
T
k 1τk>t .

The quantity ∥Γt − EΓt∥ can be controlled via a standard matrix Bernstein inequality, but the

appearance of the matrix square-root poses a challenge. Thus, it remains to prove a

perturbation bound for the matrix square-root, i.e., a bound on quantities of the form:∥∥∥√U + E −
√
U
∥∥∥

where U is a fixed positive definite matrix, and E is a mean zero, random perturbation.
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Matrix square-roots



While matrix perturbations have been studied extensively in the literature, to the best of our

knowledge, every bound on
∥∥∥√U + E −

√
U
∥∥∥ depends on the smallest eigenvalue of U.

For

instance, Schmitt (1992) proves∥∥∥√U + E −
√
U
∥∥∥ ≲

∥E∥√
λmin(U)

,

analogous to the Taylor expansion
∣∣√u + e −

√
u
∣∣ ≈ e√

u
. But this bound is effective only when

λmin(U) is large.

However, in our application, it seems quite difficult to prove, and likely false, that λmin(U) is

large. On the other hand, for positive real numbers∣∣√u + e −
√
u
∣∣ ≤ √

e, always.

Therefore, one may speculate an unconditional bound involving
√
∥E∥.
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Lemma (Matrix square root perturbation – B.R.C.-Ganguly, 2025)

Let U,E be symmetric matrices such that U and U + E are both positive semi-definite. Then∥∥∥√U + E −
√
U
∥∥∥ ≤ 3

√
∥E∥.

This lemma is key to our proof strategy, but we also expect it to be of independent interest.



Thank you!


