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Figure: Height map for an entropically repulsed Ising interface in (2+1)-dimensions.



Introduction



• Systems of random curves, also referred to as line ensembles, appear throughout

probability and statistical physics.

• Canonical examples of these processes are provided by eigenvalues of random matrices, or

by level curves in (2 + 1)-dimensional random surface models such as the six-vertex model

or interfaces in 3-dimensional spin systems.



• A phenomenon of interest is the behavior of models with a hard substrate. This leads to

what is known as entropic repulsion, where the floor propels the surface up.

• An instance of this can be seen in the 3D Ising model on a box of side-length L, with

positive boundary conditions on every face except the bottom, which is negative.

• This produces a random interface between the thermodynamically stable positive and

negative phases, which is pushed up by the hard floor.



• A phenomenon of interest is the behavior of models with a hard substrate. This leads to

what is known as entropic repulsion, where the floor propels the surface up.

• An instance of this can be seen in the 3D Ising model on a box of side-length L, with

positive boundary conditions on every face except the bottom, which is negative.

• This produces a random interface between the thermodynamically stable positive and

negative phases, which is pushed up by the hard floor.



Figure: Entropic repulsion due to a hard floor constraint in (2+1)-dimensional Ising interfaces. The

figure on the right illustrates the level curves of this interface. Picture due to Gheissari and Lubetzky

(2021).



• Without the constraint of a hard floor, in low temperature, the surface would typically be

rigid around height zero.

• But in this case, such a behavior incurs significant entropic cost — i.e., a severe

reduction in the number of possible configurations since the surface cannot move

downwards.

• Therefore, the surface chooses to quickly rise up to a height of Θ (log L), ensuring greater

entropy in the interior.
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Without entropic repulsion

With entropic repulsion

Figure: Effect of entropic repulsion in (1 + 1) dimensional Ising interfaces. Observe the difference in

fluctuations about the black lines.



• Entropic repulsion has been extensively studied in the literature, in particular via the

Solid-on-Solid model (among others), a random height function aiming to capture the

low-temperature fluctuations of Ising interfaces.

• But as curves are often easier to study than surfaces, it is natural to analyze this height

function via its ensemble of level curves, i.e., curves which pass through sites at the same

height. Observe that by definition, level curves are nonintersecting.

• Caputo, Ioffe and Wachtel (2019) proposed a putative scaling limit of this ensemble of

curves called the area-tilted line ensemble — the primary object of interest in this talk.

As the name suggests, these level curves exhibit a particular area dependent interaction

which we will discuss shortly.
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Gibbs property



• The seminal work of Corwin and Hammond (2014) on constructing the Airy line ensemble

was primarily based on the observation that its prelimiting model satisfies a Gibbs property.

• The Gibbs property is essentially a resampling invariance property. More specifically, it

prescribes the conditional distributions on finite domains given boundary data.

• Gibbs properties are common in statistical physics, like in the study of spin systems.

• For example, the Gibbs property for the Ising model states that on any domain, the

conditional distribution inside the domain (given the exterior) is that of an Ising model on

that domain (with the appropriate boundary conditions).
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Figure: Gibbs property in the 2D Ising model. The dashed orange domain is resampled using an Ising

model with the induced boundary conditions.



• The particular invariance property satisfied by the Airy line ensemble was termed the

“Brownian Gibbs property”, which we describe next.



Figure: The Brownian Gibbs property with k = 4. We resample to get the red lines given the blue data.

• Fix any domain [‘; r ] and an index k . Then the conditional distribution of X1; X2; : : : ; Xk

on [‘; r ] given the blue data in the picture is that of independent Brownian bridges

connecting X i (‘) and X i (r) conditioned to not intersect and avoid Xk+1 (illustrated in

red).



• Such a description enables the use of probabilistic and geometric techniques via

monotonicity, coupling arguments and correlation decay estimates.

• Since these tools are key inputs in our proofs as well, I will come back to these later in this

talk.



• However, a Gibbs property is essentially just a local specification, prescribing conditional

distributions only on finite domains.

• Consequently, a central question in statistical physics is that of determining all possible

infinite-volume Gibbs states. These are infinite-volume measures (i.e., on all of R or

Z
d) satisfying the relevant Gibbs property.

• The existence and uniqueness of these Gibbs states are often highly nontrivial problems,

and have been investigated for many models of interest.

• Under very general conditions, the collection of all infinite-volume Gibbs states form a

simplex. Therefore is sufficient to determine all extremal Gibbs states.
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• That the existence is not guaranteed can already be seen from a simple example:

• Consider a process X on R such that for any interval [‘; r ], the conditional distribution of

X[‘;r ] given everything outside is that of a Brownian bridge connecting X(‘) and X(r).

• Such a process does not exist. To see this, fix T and condition on

X(−T ) = x; X(+T ) = y . Then

X(0) ∼ N (0;Θ(T )) +
x + y

2
:
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Figure: Two typical trajectories of X conditioned on X(−T ) = x; X(T ) = y .

• Observe that regardless of the value of (x + y)=2,

P

“
X(0) =∈ [−

√
T ;

√
T ]
”
≥ Θ(1) ; uniformly in T; x; y .

• Sending T → ∞ shows that X(0) is not tight. Therefore X does not exist.



• The natural analog of the Brownian bridge in higher dimensions is given by the Gaussian

free field (GFF).

• In the GFF, infinite-volume limits do not exist for d = 2, but exist for all d ≥ 3, owing to

the behavior of the Green’s function. In fact, in d ≥ 3, it has infinitely many Gibbs states,

corresponding to harmonic functions on Zd .

• Although the dimension is a crucial parameter, many statistical physics models also

possess a temperature parameter that plays a significant role in deciding the uniqueness

of Gibbs states.

• For example, the high temperature Ising model has exactly one infinite-volume Gibbs

state, but in low temperature there are usually at least two extremal states – the

positive and negative phases.
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The area-tilted Brownian Gibbs property



• Returning to our primary object of interest, the area-tilted line ensembles also satisfy a

certain modified Brownian Gibbs property. This is referred to as the area-tilted Brownian

Gibbs property.

Figure: The scaling process to obtain the line ensemble.



• In order to describe the area-tilted Brownian Gibbs property, I first need to introduce the

area-tilted Brownian bridge.

• An area-tilted Brownian bridge is simply a Brownian bridge with path X(t)

• conditioned to be positive, and,

• tilted exponentially by area enclosed between it and the floor, i.e., by

exp

„
−(tilt strength) ·

Z
X(t)dt

«
:

• Given this, the area-tilted Brownian Gibbs property is the same as the Brownian Gibbs

property, with Brownian bridges replaced by area-tilted Brownian bridges with

geometrically increasing tilt-strength.
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Figure: The area-tilted Brownian Gibbs property with k = 3 lines resampled on the interval [‘; r ],

resulting in the red curves. The red numbers on the lines are the area-tilt strengths of the lines,

geometrically increasing at a rate of –.



• That the level curves of entropically repulsed Ising interfaces face geometrically increasing

area-tilt results from the fact that the entropy cost of having a large area A at height h

scales like

(1− exp (−ch))A ≈ exp
`
−e−chA

´
Therefore, as h decreases the cost increases geometrically.

Figure: The entropy cost is decided by the probability that single site spikes (in red) hit the floor.

• In the scaling limit, the kth curve will have a penalty of exp
`
−ak

R
Xk(t)dt

´
with the ak

increasing geometrically.
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• Given this Gibbs property, one then naturally asks the corresponding classification question:

What are all possible line ensembles with the area-tilted Brownian Gibbs property?

• Indeed, this is our main result, which is stated next.
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Theorem (B.R.C., Caputo and Ganguly, 2023 – informal)

Each possible extremal Gibbs state is characterized by the coefficient of linear correction

from parabolic growth, at −∞ and +∞. That is, if X ∼ — is a candidate process, the limits

L = L(—)
def
= lim

t→−∞

X1(t)− t2

|t| ; R = R(—)
def
= lim

t→∞

X1(t)− t2

|t| :

exist as numbers and determine the measure. These limits can be −∞, but must satisfy

L+ R < 0. Conversely, every choice of these limits corresponds to a unique extremal Gibbs

state, called —L;R.



Figure: Various kinds of area-tilted BG measures.



History and known results



• As mentioned in the introduction, the area-tilted BG property appears in the context of

entropically repulsed Ising interfaces, in particular, the entropically repulsed Solid-on-Solid

(SOS) model, a model on height-functions ffi, constructed as a proxy for

low-temperature Ising interfaces.

• To model the hard floor, one introduces the constraint of ffi ≥ 0.

Figure: The effect of introducing the constraint ffi ≥ 0. The surface on the left is rigid around

zero, but the one on the right is entropically repulsed.
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• As described previously, this causes an entropic repulsion effect, pushing the surface upto

a height of Θ (log (system size)) in the bulk.

• This phenomenon was first studied by Bricmont, El Mellouki and Fröhlich (1986), where

the picture predicted above was established.

• On account of this quick rise of the height function, one observes macroscopic level

curves, i.e., constant-height curves each encompassing a constant fraction of the

domain.
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• Caputo, Lubetzky, Martinelli, Sly and Toninelli (2013) performed a detailed analysis of

these level curves, proving macroscopic limit shapes as well as fluctuation estimates.

• As a putative scaling limit of this system of level curves, Caputo, Ioffe and Wachtel (2019)

consequently introduced the area-tilted line ensemble.

• The associated area-tilted Brownian Gibbs property was also introduced, leading to the

questions of existence, uniqueness, and in general, classification of all Gibbs states

with this property.
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• At this point, it will be convenient to introduce some notation.

• As explained earlier, the area-tilted Brownian bridge is defined as a Brownian bridge tilted

exponentially by area and conditioned to stay positive.

• We will use the notation La;x;y‘;r to denote a strength-a area-tilted Brownian bridge X on

[‘; r ] satisfying X(‘) = x; X(r) = y . Similarly, Bx;y‘;r will denote a Brownian bridge in the

same setting.

• Then L is defined via the Radon-Nikodym derivative

dLa;x;y‘;r

dBx;y‘;r
(X) =

1

Za;x;y‘;r| {z }
partition function

1X≥0| {z }
avoiding the floor

exp

„
−a
Z r

‘

X(t)dt

«
| {z }
exponential tilting by area
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• In the multi-line case, for k > 1, the definition of La;–;x;yk;‘;r is that of k independent

area-tilted Brownian bridges conditioned to avoid each other, with the ith of them:

• Pinned at x i at ‘, and y i at r .

• Facing an area-tilt strength of a–i−1.

Figure: Illustration of La;–;x;yk;‘;r [f ] with k = 3.

• We will also use L···
···[f ] to indicate a sample from L···

··· conditioned to stay above the

function f .
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• In this notation, the resampling distribution for the area-tilted Brownian Gibbs property

is given by La;–;x;yk;‘;r where [‘; r ] is the domain, k is the number of lines being resampled,

and x i = X i (‘) and y i = X i (r) for 1 ≤ i ≤ k .

• As alluded to before, the study of this Gibbs property benefits from several crucial

monotonicity properties satisfied by the measures L··· ;x;y
··· [f ], discussed next.
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• If the endpoints and floor for the blue lines are higher than those for the red lines, then

the law of the blue lines stochastically dominates that for the red lines.

Figure: The blue lines stochastically dominate the red lines.



• Caputo, Ioffe, and Wachtel (2019) demonstrated the existence of measures with this Gibbs

property by constructing the zero-boundary ensemble —0 as follows:

• Denote by —0
k;T = L0;0

k;−T;T the k-line zero-boundary ensemble, i.e., every line X i (for

i = 1; 2; : : : ; k) satisfies X i (±T ) = 0. The authors showed that the measures —0
k;T are

tight. Then by monotonicity, the local weak limit of these measures exists as

k; T → ∞. This is called —0.

Figure: The limiting procedure to obtain —0.

• —0 is translation invariant.
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• Another ensemble of interest arises when the boundary is allowed to vary freely, akin to

free boundary conditions in spin models.

• In our setup, this ensemble is called the free boundary variant —fk;T . These are measures

on [−T; T ].
• The well-definedness of this measure for any k; T , as well as the tightness of this collection

of measures was established by Caputo, Ioffe and Wachtel (2019).

• Tightness guarantees the existence of some limit, and hence it is natural to ask if this

collection has multiple limits, and how these limits behave.
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that for every finite k, —fk;T , converges to the infinite-volume zero boundary variant

(for k lines).

Consequently, one may take limits as the number of lines k → ∞ to obtain
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k→∞

lim
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—fk;T = —0

• However the full limit remained open, and was established by Caputo and Ganguly (2023),

who among other results concerning the tail behavior of the top line, correlation decay and

ergodicity, also establish the following uniqueness result:
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Theorem (Caputo and Ganguly, 2023)

Call an ensemble X = (X1; X2; : : : ; ) uniformly tight if for every " > 0, there is a C such that

sup
t
P(X1(t) ≥ C) ≤ ":

If X satisfies this property and is asymptotically pinned to zero, then X ∼ —0.

• The condition of asymptotic pinning to zero essentially says that the line ensemble has

lines arbitrarily close to the floor at zero.

• This technical condition is needed because if X is an infinite ensemble satisfying the

area-tilted Brownian Gibbs property, so is X + h for any h > 0. We will implicitly assume

this condition throughout this presentation.
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• As a consequence of the result of Caputo and Ganguly, every possible limit of —fk;T is —0.

• This is because each such limit is uniformly tight via prelimiting tail bounds.

• Also, every translation-invariant ensemble is uniformly tight implying that —0 is, in

particular, the unique translation invariant ensemble (that is asymptotically pinned to

zero).

• But are there non-translation-invariant states? This is answered in the positive by our

main result.
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Theorem (Main result formally stated)

Fix – > 1. Let Gext be the collection of all extremal Gibbs measures satisfying the area-tilted

Brownian Gibbs property (with strength given by a = 2 and –). If — ∈ Gext and X ∼ —, then

the following limits are deterministic and hold almost surely:

L = L(—)
def
= lim

t→−∞

X1(t)− t2

|t| ; R = R(—)
def
= lim

t→∞

X1(t)− t2

|t| :

These limits satisfy L;R ∈ [−∞;∞) and L+ R < 0.Conversely, for every L;R satisfying these

properties, there is exactly one measure —L;R ∈ Gext with these limits. As a consequence,

—−∞;−∞ = —0.

For every such —, X2(t) (and hence Xk(t) for all k ≥ 2) is uniformly tight. Further all these

measures are related by the following property: if X ∼ —L;R, then X(• − h) ∼ —L+2h;R−2h.



Figure: Only the top line can have parabolic growth, and only at rate t2 with linear corrections.



• Although our results focus on the infinite-line ensemble, it is clear that the top line plays a

special role as the only line allowed to have parabolic growth.

• In the absence of the other lines, the top line satisfies a simplified Gibbs property where

the resampling strategy is given by just an area-tilted Brownian bridge conditioned to

avoid the floor.

• This property was first studied by Ferrari and Spohn (2003) in the context of polynuclear

growth. They considered a one-layer approximation to the multi-layer polynuclear growth

model, replacing every layer except the top by a semicircle. This reduced the question to

that of a Brownian bridge conditioned to avoid a circle.
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• The gap process between this circle-avoiding Brownian bridge and the (semi)-circular floor

has a local limit, called the Ferrari-Spohn diffusion —FS — a key member of the KPZ

universality class.

Figure: Brownian bridge conditioned to avoid a circle, from Ferrari and Spohn (2003). The local

limit of the gap process b+ − cT is the Ferrari-Spohn diffusion.



• In fact, a straightforward application of the Cameron-Martin / Girsanov theorem explains

the relationship between area-tilting and circle/parabolic avoidance:

Lemma (Parabolic avoidance)

Fix x; y ; T > 0. Let X ∼ La;x;y−T;T , and let Y be a Brownian bridge from x − p(−T ) to y − p(T ),

conditioned to avoid −p(·) where −p is the parabola t 7→ − a
2 t

2. Then, X
d
= Y + p.

• That is, Brownian bridges conditioned to avoid a parabola have a gap process

identical in law to area-tilted Brownian bridges.

• All our results for the one-line case implicitly assume a = 2 since the corresponding

parabola is −t2. Scaling allows us to do this without loss of generality.

• Since a circle and a parabola behave similarly near the origin, the local weak limit of the

circle-avoiding process is the same as that when avoiding a parabola instead (both are the

FS diffusion).
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Brownian Gibbs property.

• A complete answer to this question serves as a key input to our main result.
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Theorem (B.R.C., Caputo and Ganguly, 2023 – one line case)

Each possible extremal Gibbs state for the one-line case is characterized by the coefficient of

linear correction from parabolic growth, at −∞ and +∞. That is, if X ∼ — is a candidate

process, the limits

L = L(—)
def
= lim

t→−∞

X(t)− t2

|t| ; R = R(—)
def
= lim

t→∞

X(t)− t2

|t| :

exist as numbers and determine the measure. These limits can be −∞, but must satisfy

L+ R < 0. Conversely, each choice of limits corresponds to a unique extremal Gibbs state.

Further, —FS corresponds to L = R = −∞, the unique translation-invariant state.

Observe that in terms of the “dual” Y = X − t2, the limits considered above are

L = limt→−∞ Y (t)=|t| and R = limt→∞ Y (t)=|t|.



• The key lesson from the one-line analysis is the following:

• The only possible rate of parabolic growth is given by at2=2 (upto a linear

correction) where a is the tilt strength. Otherwise, the process is uniformly tight.

• In fact, this heuristically explains why only the top line can grow parabolically in the

multi-line case.

• This is because the top line can at most grow as t2. But it must also stay above all the

other lines, which have higher tilts 2–i−1. Therefore none of them can grow

parabolically because if they do, they need to grow like –i−1t2 and –i−1t2 − t2 ≫ t.
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Overview of the proof



• We will now review some of the key ingredients in the proofs of the one-line and multi-line

statements.

• Existence in both cases involves defining finite domain versions and then taking suitable

(local weak) limits.

• The uniqueness question on the other hand involves taking two measures with a given

limit and coupling them on (arbitrary) compact domains.

• In the case of infinitely many lines, this coupling is quite delicate, since one has to couple

infinitely many lines.
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• To get around this difficulty, we do not couple the lines exactly, but only upto a small

error, via a reverse coupling argument.

• Without getting into details, essentially this considers two ordered boundary data but

produces with high probability a coupling which reverses, for finitely many lines at the top,

the ordering obtained from the usual monotone coupling.

Figure: Coupling via usual monotonicity, vs using reverse coupling. Such “reversed” times exist

with high probability in the independent coupling, allowing the reversal.



• Since the one-line result is much simpler, I will now describe some of the geometric ideas

involved in its proof.

Throughout this discussion, let X be a candidate process, and define

Y = X − t2, the dual representation.

• The intuition here mostly relies on the tangent method (coined by Colomo and Sportiello

in 2016).
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• In our case, it states that the macroscopic path of a Brownian bridge conditioned to

avoid a parabola is that of the convex hull of the endpoints and the parabola.

Figure: Brownian bridges starting and ending at the orange points, conditioned to avoid the

parabola, macroscopically follow the black trajectory. The effect of the parabola only becomes

pronounced near and between the green tangency points.



• In particular, this implies that if the endpoints are far from the parabola, the avoidance

constraint is not felt until it is close to the parabola, and therefore follows a Brownian

trajectory.

For example, in the setup below, the portion of the path outside the red lines

can be coupled with Brownian bridges connecting the endpoints to the tangency points in

red.

Figure: The portion outside the red lines can be coupled with Brownian bridges.
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• A first illustration of this principle is manifested in the proof that the limits L and R exist.

For concreteness, let us consider the existence of R.

• Since the existence of the limit is the same as lim sup = lim inf, let us fix ‹ > 0 and see

why lim supt→∞ Y (t)=t > −h implies lim inft→∞ Y (t)=t ≥ −h − ‹ as well.

• lim supt→∞ Y (t)=t > −h means that there are arbitrarily large times T such that

Y (T )=T > −h.
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Figure: Upgrading a witness time T to claim uniform lower bounds on intervals via the tangent method.

• The tangent method then says that the red trajectory from a witness time T to the

tangent location h=2 is Brownian, and hence linear upto diffusive fluctuations.

• This shows that Y (t)=t > −h − ‹ essentially throughout.



• As a second illustration, consider the existence part of the theorem with L = R = −2K.

• Letting —KT be the law of a parabola avoiding Brownian bridge with endpoints at

(±T;−2KT ), we choose n < m large and try to couple —Kn and —Km in the bulk.

• Appealing to the tangent method, outside the red lines, the orange and blue curves are

close to Brownian bridges (from their respective endpoints to (±K;−K2)), and hence

are close in TV to each other slightly away from K, allowing us to couple them.
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• While these are some of the key ideas that go into the proof of the one-line statement, the

analysis of the multi-line case is significantly more delicate.

• As already indicated, the key steps involve

1 developing almost optimal “coming down” estimates,

2 setting up an inductive framework to decouple the top line from the rest, and,

3 implementing a reverse coupling strategy relying on stretched-exponential tail estimates.
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