
AN OVERVIEW OF STOCHASTIC CALCULUS

1. Brownian motion

I will discuss Brownian motion briefly, leaving many interesting and technical aspects unexplored, to be
taken up in future sessions. A Brownian motion is a continuous-time stochastic process, i.e., a family of
random variables {Bt}t∈[0,1] (say) on the same probability space (Ω,F ,P) with the following properties:

• B0 = 0 almost surely.
• For all 0 ⩽ t1 < t2 < · · · < tn ⩽, the increments Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1 are independent.
• For all 0 ⩽ s < t, the increment Bt −Bs is normally distributed with mean 0 and variance t− s.
• The sample paths of B are continuous almost surely.

The last point requires some clarification. Whenever we say some event happens almost surely, we do not
mean that the set of such ω has probability 1. That would require the set of such ω to be measurable, which
can be hairy to ensure given the uncountable nature of things. Instead, we mean that there is some set of ω
with probability 1 on which the event happens. This is a non-issue if your probability space is complete, i.e.,
subsets of null sets are null, but completions can have other issues.

In any case, it is easiest to trust that there is a suitable construction of a probability space hosting a
Brownian motion (I leave details for future speakers), and examine some consequences, but let us discuss the
notion of filtration briefly. A filtration is a collection of nested σ-algebras (subsets of the global σ-algebra
F) {Ft}t such that Ft ⊆ Fs for t ⩽ s. The idea is that Ft contains all the information available up to time
t. We say a process X is adapted to a filtration if Xt ∈ Ft (by which we mean that Xt is Ft-measurable).

For Brownian motion, a natural choice is Ft = σ(Bs : s ⩽ t), the σ-algebra generated by the process up
to time t. By this choice, F0 = {∅,Ω} is the trivial algebra. Of course, any event measurable with respect
to F0 has probability 0 or 1. But a much more interesting result is

thm:blumenthal Theorem 1.1 (Blumenthal’s 0-1 law). For any event A ∈ F+
0 , we have P(A) ∈ {0, 1}.

What is F+
0 ? It is every event that is known at time F+

ε , no matter how small ε > 0 is, i.e.,

F+
0 =

⋂
ε>0

Fε.

As an example of an event in F+
0 is the event that Brownian motion is differentiable at time 0. Another

example is the event that ⋂
ε>0

{∃0 < t < ε : Bt = 0},

that is, the Brownian motion hits zero at arbitrarily small positive times. By Blumenthal’s law, both of these
have probability either 0 or 1. Deciding which one is a more involved question (and perhaps a topic for future
talks?)

Two interesting ideas here:

• Donsker invariance principle, stating the scaling limits of random walks to Brownian motion.
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• The Komlos-Major-Tusnady theorem, a refinement of Donsker, asserting a very strong L∞ coupling
result between random walks and Brownian motions.

2. Stochastic calculus

With that brief appetizer, let us turn our attention to stochastic calculus, the focus of (half of) this seminar.
Recall the usual Stieltjes integral (on [0, 1])∫

FtdGt := lim
∑

Fsi(Gti+1 −Gti),

over partitions 0 = t0 < t1 < · · · < tn = t of [0, 1], where si is any choice ∈ [ti, ti+1]. Comparing this
with the choice si = ti, the difference is∑

(Fsi − Fti)(Gti+1 −Gti),

with absolute value at most ∑
|Fsi − Fti |

∣∣Gti+1 −Gti

∣∣ .
We say that the Stieltjes integral is well-defined only when this latter quantity goes to zero as the mesh-size
goes to 0. For instance if the Holder exponents of F is p and of G is q, the last quantity is bounded by∑

|si − ti|p|ti+1 − ti|q ⩽
∑

|ti+1 − ti|p+q → 0,

as long as p + q > 1. To see why we require arbitrary mesh-points to work is that we want to be able to
reason like

1 · d(f(Gt)) = f ′(Gt)dGt

i.e. have a chain rule. If we chose our endpoint to be always ti, we would need∑
f(Gti+1)− f(Gti) ≍

∑
f ′(Gti)

(
Gti+1 −Gti

)
.

But the way this goes is that we expand

f(Gti+1)− f(Gti) = f ′(Gsi)(Gti+1 −Gti) + smaller corrections.

for some si ∈ [ti, ti+1]. Thus, having arbitrary mesh-points would imply a chain-rule (or a substitution
principle) for our integral.

Unfortunately, Brownian motion is only 1
2

− Holder (i.e., p-Holder for every p < 1/2), so the Stieltjes
integral is not well-defined (only barely though!). Actually, for Brownian motion, the problem is worse.
Even if you fix the choice of si = ti, the integral does not exist in the sense that the limit does not exist
almost surely. Let us see an example:

n−1∑
i=0

Bti(Bti+1 −Bti) =
1

2

n−1∑
i=0

(B2
ti+1

−B2
ti)−

1

2

n−1∑
i=0

(Bti+1 −Bti)
2.

due to the identity

a(b− a) =
1

2
(b2 − a2)− 1

2
(b− a)2.

The former telescopes to
1

2
(B2

1 −B2
0) =

1

2
B2

1 ,
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so we are left with understanding
n−1∑
i=0

(Bti+1 −Bti)
2.

The limit of this quantity, as the mesh size goes to 0, does not exist. In fact, it is known that

sup
P

n−1∑
i=0

(Bti+1 −Bti)
2 = ∞,

where the supremum is taken over all partitions of [0, 1]. Instead, this quantity converges in L2 to t, that is,
for any sequence of partitions Pn with mesh-size going to 0, we have

lim
n→∞

n−1∑
i=0

(Bti+1 −Bti)
2 = t.

We usually write this as (dBt)
2 = dt. This is the starting point of the Ito integral, which is defined as∫

FtdBt = lim
∑

Fti(Bti+1 −Bti),

where the limit is in L2 sense (actually, to extend to a wider class of integrands, the limits may need to be
taken in the weaker senses). The choice of the left endpoint also makes the integral process a martingale,
which opens up the doors to a lot of martingale theory, some of which will (probably) be discussed in future
talks.

A couple of subtopics here:

• The Girsanov theorem, about how shifts of Brownian motion by a deterministic function can be
made into Brownian motions under a different measure.

• The martingale representation theorem, which says that any square-integrable martingale (with some
mild measurability conditions) can be represented as an Ito integral with respect to Brownian motion.

• Some continuous martingale theory, semimartingales, and how to define the stochastic integral more
broadly.

• Local times (specifically for Brownian motion or for more general processes), Tanaka’s formula.

The second subtopic can be expanded into multiple talks, and is related to a lot of modern research,
because of its connections to the Malliavin calculus, and in general, chaos expansions of random variables.

3. Stochastic differential equations

Once we define the stochastic integral, one can start make sense of expressions of the form

dXt = a(t,Xt)dt+ σ(t,Xt)dBt,

as a process X satisfying

Xt = X0 +

∫ t

0
a(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs.

A famous example is the Black-Scholes equation, which is a stochastic differential equation for the price of
a financial derivative. The equation is

dSt = µStdt+ σStdBt.
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Let us discuss the Ito formula, which is a generalization of the chain rule to stochastic integrals (which,
as we saw, is not for free as in the Stieltjes case). Basically, the observation is that to express f(Bt) as an
SDE, let us split this up into a telescoping sum as follows:

f(B1)− f(B0) =
n−1∑
i=0

f(Bti+1)− f(Bti)

=
n−1∑
i=0

f ′(Bti)(Bti+1 −Bti) +
1

2

n−1∑
i=0

f ′′(Bti)(Bti+1 −Bti)
2 +

1

6

n−1∑
i=0

f ′′′(Bsi)(Bti+1 −Bti)
3,

for some choices si (which are random). The proof of the L2 convergence of the quadratic variation can be
extended to show ∥∥∥∥∥

n−1∑
i=0

f ′(Bti)(Bti+1 −Bti)−
∫ 1

0
f ′(Bt)dBt

∥∥∥∥∥
2

→ 0.

The first term converges in L2 to the Ito integral by definition. If f ′′′ bounded the last term can be shown to
go to 0 in L2 as well. This leads to the Ito formula, which written differentially, states:

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt.

There are several subtopics here:

• Existence and uniqueness of solutions, the notions of strong and weak solutions etc.
• Algorithms to compute these solutions, starting with Euler-Maruyama etc.
• The notion of a general Feller process (which is a general class of Markov processes), generators,

semigroups, resolvents and associated functional analysis theory.
• The PDE-side of things, i.e., the Fokker-Planck equation, the Kolmogorov forward and backward

equations, etc. which talk about the evolution of the density of the process.
• The reverse problem, i.e., given a PDE (of a specific type), how to interpret its solution via a stochastic

differential equation. This is the Feynman-Kac formula.

Beyond these, there are some broader topics which can be the subject of talks:

• Scaling limits. How do smoother or discrete processes scale to Ito processes? A central result here is
the Wong-Zakai theorem, which writes the solution to a SDE as a limit of solutions to a sequence of
ordinary differential equations with smoothened noise. This idea comes up repeatedly in the modern
theory of stochastic PDEs.

• Large deviations of SDEs, in particular the Freidlin-Wentzell theory, which gives a large deviation
principle for the paths of a SDE. Talking about this might involve reviewing the basic theory of large
deviations (which can be done heuristically, since we have seen this a couple of times in the recent
past).

• Maybe a more applied talk, like applications of the theory to pricing options, in particular, risk-neutral
pricing. Almost all the tools we will discuss have interesting uses there.

• Finally, a very modern direction would be to relate stochastic calculus to rough-paths theory, which
defines a pathwise theory of integration, even for paths rougher than Holder 1/2, via introducing
a certain second-order process that encodes the iterated integral of a path against itself. This
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is particularly relevant considering the recent interest in stochastic PDEs and Hairer’s theory of
regularity structures.
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